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The problem of determining nontrivial equilibrium forms of thin elastic plates
in a stream of perfect fluid is considered. The scheme of stream flow with an
infinite cavity (the Kirkhoff scheme) is used for determining hydrodynamic for-
ces acting on a curved plate, The ensuing boundary value problem is analyz-
ed, and it is shown that the operator of the prablem is self-conjugate and posit-
ive definite, An analytic solution of the outer hydrodynamic problem is deriv-
ed and the fluid reaction on the plate determined,

The determination of equilibrium curved forms reduces to solving an integro-diff-
erential equation in eigenvalues. The fimst eigenvalue (the critical velocity of the
oncoming stream) and the related eigenfunction (the curved plate equilibrium form)
are obtained by the iteration method, The optimization problem of determining the
distribution of the plate thickness for which the nontrivial equilibrinm forms obtains
at the maximum oncoming stream velocity is then formulated. Optimality conditions
are established., The optimization problem is solved for a thin three-layer panel, and
it is shown that in this case the optimality condition is not only necessary but, also,
sufficient,

Problems of optimization for elastic plates interacting with a perfect fluid were
previously considered in [1, 2},

l, Statement of the problem and basic equations
Let us consider the problem of perfect fluid flow past an elastic plate 04 (Fig. D).
In the undeformed state the plate lies in a plane normal to the } -axis with its lead~
ing edge (point A’ in Fig, 1) free and its rear edge (z = 0, y = 0) fixed to an
absolutely rigid semi-infinite plate OB 1located on the semiaxis x>0 at y = 0.
To investigate the noatrivial equilibrium positions of the
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Fig. 1

plate we consider besides its initial undisturbed form (y = 0) some equilibrium cur-
ved form OA. Denotingby u (z) (u <€ I) the plate deflections, we write the
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equation of plate equilibrium and the boundary conditions as

(Duxx)xx:zo (— l<¢‘~<\ 0 (1L D
w0 =ue(0) =0, (Dugs=—t = [(Dibs)sla=t = 0 (1.2
Boundary conditions at points £ = 0 and z = — ! define the rigid attach-

ment of the plate rear edge and the absence of bending moments and shear forces at
its free edge, respectively.

The cylindrical rigidity denoted by D is related to the [plate] thickness distribut-
ion A (x) by formula D = K,h™, where K, = const. Parameter m and
constant K, are determined by the plate construction and by constants of its material
(Young's modulus and Poisson's ratic). For m = 3 and m = 1 this formula cor-
esponds to solid and three-layer plates, respectively. In the latter case % is under-
stood to be the thickness of the outer reinforcing layers, The fluid reaction on  the
plate is denoted by Q.

To determine the reaction of the fluid we consider the hydrodynamic problem of
a perfect fluid flow around the contour (A, assuming that the fluid stream flowing
past the bent plate becomes separated from the plate and an infinite cavity BOAK
is formed, We denote the fluid velocity by v (z, y). At infinity the velocity vector
is parallel to the I -axis and its modulus is Ve. It is assumed that the fluid motion
is irrotational and its potential @ (z, y) (v = Vy) satisfies the Laplace equation,

We represent the potential ¢ in the form ¢ = Ve -+ )

Function @, as well as @, is harmonic and vanishes at infinity,

AD =0, (D=0 (1.3
Function @ must satisfy specific boundary conditions at the plate surface and at
fluid free surface (the cavity boundary), After linearization the boundary conditions
are related to the z-axis, negiecting terms o (H) and o (U), where H = max,
h and U = max, u. We draw a zero thickness cut along the semi-infinite interval
z > — [ of the x -axis. The upper and lower boundaries of this cut, as weli as
the functions along the boundaries, are denoted by plus and minus indices, respectively.
After linearization we relate to surface S~ the condition of plate surface impermeab-
ility to fluid. We obtain

(@) =valty (—I<2KY), (@) =0 >0 (1.4)

It is assumed here that the characteristic thickness of the plate is considerably
smaller than its characteristic deflection, The kinematic condition at the free surface
related to surface S* is of the similar form

(D) = Voo (1.9

The dynamic condition (Vg¢)® = const which follows from the Bernoulli integr~
al and implies the constancy of pressure along the cavity boundary assumes the form

(@I =0 (z>—1 (1.6

For a given distribution of deflections # = u (z) the boundary value problem
(1.3), (1.4), (1.6) is closed and can be solved for function @ (z, y).Having determi-
ned function @ (z, y), we obtain for the form of the cavity the following quadrature
(as implied by (1.5)):
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The fluid reaction distribution on the plate is determined using the Bernoulli integ-
ral, After linearization and elementary transformations we obtain

Q= p—p = Pl ((Dx)-

where 0 is the fluid density, In the plate deflection equation (1. 1) and boundary con-
ditions (1. 2) we represent [ interms of h. We then substitute for Q its express-
ion from (1.8) into Eq, (1.1) and pass in the obtained equation and formulas (1, 2) —
(1. 6) to dimensionless variables: u’ = u/l, ' = 2/l, y' = y/l, O’ = D/lv,,
and k' = Ih/S, where S is the cross section area of the elastic plate OA (the
primes are henceforth omitted). In this way we obtain for functions % and @ the
closed boundary value problem

(e = — A (@2, A =i S K™ (1<) L9
u=Ue=0 (x=0), AUy = A"Ur) =0 (z=—1)

AD =0, (D), =0 (1.10)
(@) =0 (=12

(D)) =ue (=1 <20, (@) =0 (z>0)

The hydrodynamic problem (1, 10) for the potential @ and problem (1. 9) of bend-
ing are interrelated, since the boundary conditions for @ contain the derivative of the
plate deflection distribution, and the derivative of potential @ appears in the equat-
ion of plate deflection,

Problem (1. 9), (1.10) is homogeneous, hence it admits the trivial solution u ==

@ = 0. The problem of finding nontrivial solutions of this problem leads to a prob-
lem in eigenvalues, in which A represents the eigenvalue. We seek the first eigen-
"value A which corresponds to critical values of parameters P, Ve, [, §, and K.

The existence of nontrivial solutions in system (1, 9) may be taken as an indication

of instability of the undeformed plate position,

(1.8)

2 Analysis of the boundary value problem, Since
problem (1.10) for potential ® is linear with respect to & and independent of  h,
the expression for (D)~ in the right-hand side of Eq. (1.9) can be written as

(d)x)— = Lu

where L is somelinear operator that is self-conjugate and positive. We shall prove
that,

Let ul(z) and u?(z) be two arbitrary functions that are twice differentiable on
segments [—1,0], and let ®' and ®* be solutions of the boundary value problem
(1.10) for u= u' and u = u?, respectively. We complement the definition of
functions u! and u® on segment [0, 8], where § is some positive number, by sett-
ing u!(2) = u? (z) =0, We obtain
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0 [ []
S WLz = S WLutdz = — S u (O, 2) dz (2.2)
-1 -1 <1

into account that at z = —1

Applying to the last integral in (2. 1) the formula of integration by parts, taking
(@Y)* = (®%)-==0 , and using the boundary condit-
ions for potentials ®! and @2, we obtain

0 ]
1.98 S wiluldr = S ul (P~ dz =

—1 -1
§ @, @2 az=
-1
&
§ 1@, (@2 ~ @,* (@%4] d=

-1

We denote by §,* and §;~ segments
of the cut boundaries for which —1 <z

<8 ;by Z, thecircle of radius 6
with center at point (—1, 0}, and by =n
-1 -0.5 z the inward normal to the boundary §, =
Fig. 2 Syt + Sy~ + T4 (see Fig. 2). In this
notation
(1]
S W Lubdz = — S 2 eras+ S-‘;’%— o2 ds (2.2)
—1 Sy

s

Applying now Green's first formula to the first integral in the right-hand side of
(2. 2), we obtain

0

' * d oQ!
S ullu?dz = — S(Dl e —ds + S Bn
-1 Sg 2y

Taking into consideration the boundary conditions for potentials ®! and @2
we rewrite the last equality as

0
S utL?dz = S u (D) dz 4 S(—ggi—l- @2 — a_oi_qn)d

on
—1 -1 26

Integrating by parts and passing to the limit 6 — oo, we obtain the formula

[ 0

g ulLu?2dz = s‘ w2lul dz
1 ey

(2.3)
Positiveness of operator L is proved in a similar manner,

In formula (2, 2) we
set u!=u?and OPl=

@%. Applying Green's second formula, we obtain

S'ulLulda:~= S (VDU dvy + S __aa) ®1ds

(2.9
—1 Vo 26
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Region V, isbounded by surface S, With d in formula (2.4) approaching
infinity we have the inequality
0
5' utLul dz == S (VO dr >0 (2.5)
—1 v

The second integral in (2, 5) is taken over region V which represents the exterior
of the semi-infinite cut —1 <z, y = 0,

Since the positiveness and self-conjugacy of the left-hand side of Eq. (1.9) is
known, the boundary value problem in eigenvalues (1.9), (1. 10) is seif-conjugate and
positive definite, which proves that the eigenvalues are positive and real.

3, Determination of fluid reaction and derivat-
ion of the integro-differential equation for plate
deflections, The effect of fluid [flow] on bending of the plate is taken into
account by the expression in the right-hand side of Eq. (1.9). To determine the der-
ivative of potential ()~ we consider the extemal hydrodynamic problem (1. 10),
introducing in the analysis the auxilliary function

W=0 4 i¥ (3.1)

of argument z = z + iy (i is the imaginary unit), Function W is assumed analyt-
ic in the plane with the semi-infinite cut — 1 <{ z, y = 0. For the derivative
_of function W (z) we have the expression W' = @, + i¥,. Using the Cauchy
— Riemann equations and boundary conditions we obtam

Uy, — 12O
(Vo) = — (@) = — @) g={ 6, 230 (3.2)
from which with the first of boundary conditions (1. 10) follows that for — 1 < z,
Re (W)* =0, Im (W) = — ig (3.3)

Thus for the determination of derivative W’ of the analytic function W we ob-
tain from (3. 1) the mixed boundary value problem (3. 3) whose solution obtained by
Sherman is of the form

W = — (3. 4)

0 0
\ (t + 1), dt 1 5 (t+ ) udt
2t (2 +1)‘/‘_. t—z 2mi(at )0 ) E—2

Passing in expressions in the right-hand side of (3.4) to the limitz = z + iy —
z —i0 (0 > y) and using the Sokhotskii — Plemel formula, we obtain

" g (1+ 1)l 'udt 1 g (1 + t)"/udt (3.5)

((Dx)—== 25(1+5)‘/‘ t ~—2x 231'.('1-{-.’:)‘/‘ o

where the integrals are to be understood according to the Cauchy meaning of the prin-
cipal value, In what follows we also use for the unknown quantity the formula

(@) = — S K (t, z)u,de (3.6
-1
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K=y [+ 24"

The obtained formula for the fluid reaction is substituted into the equilibrium eq-
uation (1. 9) which, then, yields for the distribution of plate deflections the homogen-
eous integro-differential equation

0
(s = 1 § K (t,2) uedt (8.7
-1

Solution of the boundary value problem for Eq. (3,7) with conditions (1. 9) was
obtained numerically for a constant distribution of plate thickness (2 = 1) using
the method set forth in [3]. The first eigenvalue thus determined is A = 5.132. The
related distribution of deflections is shown in Fig, 2 by the solid line,

An an illustration we consider a steel pl'ate 1 m wide and 1cm thick. The
critical velocity of motion of such plate in water is

Vo =V AES?/ 12018~ 10 m/s

Below we consider plates of variable thickness and determine the thickness distrib-
ution for which the first eigenvalue reaches its maximum,

4, The problem of optimization, Takinginto account that
the boundary value problem (8. 7) with conditions from (1. 9) is positive definite and
self-conjugate, the first eigenvalue ) is determined using the first variational princi-
ple of Rayleigh [3]

A = min, J (k, u) ‘ (4.1
0

J(h,u) = (S hmuixdx) / So § K(t, p)u(x)u, (t)dtdr

- —

In this case the minimum is sought in the class of functions that are twice contin-
uously differentiable and satisfy the boundary conditions in (1, 9) formulated for 2 =
0. The other two boundary conditions in (1, 9) are inherent to functional J and,

thus, automatically satisfied,
Consider the following problem of optimization: find among all continuous funct-
ions £ (x) that satisfy the isoperimetric conditions of constancy of the plate section
0
{hi@)dz=1 (4.2)
-1
a function which maximizes the first eigenvalue 4, i.e,
A* = max, min, J (k, u) (4.3)
The necessary condition of optimality is of the form
Al = e (4.4)
where ¢ is the constant Lagrange multiplier which corresponds to the isoperimetric
condition (4, 2),

If the dependence of bending rigidity D on thickness A islinear (m = 1)
condition (4.4) is evidently independent of function %, This makes possible the
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analytical solution of the optimization problem (4.3), In fact, from Eq. (4,4) with
boundary conditions (1. 9) we find that for z = ( the distribution of deflections
u* (z) of the optimal plate is

u* = ca?/2 (4.9)
Equation (3. 7) with boundary conditions (1. 9) formulated for £ == —1 and aliow-

ance for formula (4. 5) for u™ yield the following Cauchy problem for the second ord-
er ordinary differential equation:

0 +
Bbe == A* S K, 2)tdt, h*(—1)=h*(—1) =0 (4.6)
bl |
The optimal thickness distribution obtained by integrating (4. 6) iz of the form

0 9

h* = S S (x— ) K (¢, m)dtdy («.7

]

Using the isoperimetric condition (4. 2) for the eigenvaiue A* we obtain

(]

-1

0
S (z—mK( n)tdtdqu) " = 7.567 (4.8)

8€/3°

The gain obtained by [thickness] optimization over a constant thickness plate is
47.4%,. The optimal thickness distribution h* (z) is shown in Fig, 2 by the dash
line,

Let us prove that in the case of m = 1 formula (4.4) represents not only the
necessary but, also, the sufficient condition of optimality. To do this we estimate
the rest A* — A, with A*, u™, and A* representing the solution of the boundary
value problem (3.7), (1. 9), (4.4), and A and U are the eigenvalue and the eigen-
function of problem (3.7), (1.9) that relate to some arbitrary thickness distribution

h(z). 1t is also assumed that 2* and % satisfy the isoperimetric condition (4. 2).
We have

A=k = i, J (8% ) = min, ] (1) (6%, %) = ) =
—,’(—S(h* B) (uss®? dz, "‘5 SK(t 2 (f) u* () dadt

o B

but by the optimality condition (4.4) (4x:*)® = ¢?, hence

[}
A —h > Ve —mas (4.9)

-1
Since fanctions h* and % satisfy the isoperimetric condition (4. 2), the right-
hand side of inequality (4. 9) is zero, Hence A* > A and in the case of m = 1
(4. 4) is the sufficient condition of the over-all optimam, and formulas (4. 7) and
(4.8) yield the unique solution of the problem of optimality.
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